裳華房のtwitterをフォローする


オンライン書店の 『散乱理論』 購入ページへの直接リンク
amazonhonto楽天ブックスオムニ7BOOKFANe-honHonya Club
丸善 Knowledge Worker紀伊國屋書店TSUTAYA

★上記のリンク先で「在庫切れ」「販売中止」等の場合もございますが、このページの表示が
 「在庫あり」の際は、お近くの書店・大学生協等でお取り寄せができます★


物理学選書20
散乱理論  【復刊】
Scattering Theory

理学博士  笹川辰弥 著
A5判/348頁/定価6480円(本体6000円+税8%)/1991年3月
ISBN978-4-7853-2321-9 (旧ISBN4-7853-2321-3) オンデマンド方式による印刷・製本

 著書が長年にわたって講義してきた非相対論的散乱理論を詳しく述べる.後半では,原子核の研究には欠かせないスピン偏極量に関して多くのページを使い具体的に解説する.

 ※物理学選書」の一覧はこちら

【目 次】

『散乱理論』 カバー
第1章 1次元の散乱問題
 §1.1 シュレーディンガー方程式
 §1.2 微分方程式の形で解く方法
 §1.3 積分方程式の形で解く方法
 §1.4 束縛状態
 §1.5 ポテンシャル

第2章 波束の進行と断面積
 §2.1 自由空間での波束の進行
 §2.2 ポテンシャルが作用する場合の定常状態の波
 §2.3 波束の進行
 §2.4 断面積
 §2.5 光学定理
 §2.6 光学模型
 §2.7 光学ポテンシャルが存在する場合の光学定理

第3章 部分波による記述
 §3.1 二体問題
 §3.2 角運動量演算子と球関数
 §3.3 球ベッセル関数
 §3.4 平面波の部分波展開(レイリーの式)
 §3.5 位相差
 §3.6 シュレーディンガー方程式の積分形
 §3.7 例題
 §3.8 グリーン関数
 §3.9 リップマン-シュウィンガーの式
 §3.10 定在波

第4章 リップマン-シュウィンガーの式
 §4.1 ヒルベルト空間
 §4.2 メラーの波動演算子
 §4.3 Ω(+)の重要な性質
 §4.4 恒等式
 §4.5 波動行列の使いやすい形
 §4.6 ファデーエフ‐ヤクポフスキーの例題
 §4.7 ポテンシャルに対する制約
 §4.8 ノイマン級数の収束性
 §4.9 加速法

第5章 散乱問題を記述するいろいろな行列,ヨスト関数
 §5.1 進行波と定在波の関係
 §5.2 グリーン関数
 §5.3 進行波と定在波のグリーン関数
 §5.4 ボルテラ型のグリーン関数とヨストの解
 §5.5 いろいろな行列
 §5.6 ヨスト関数とヨストの解
 §5.7 レビンソンの定理
 §5.8 ヨストの解に対応する原点正則解

第6章 二体系の散乱に関する諸問題の理論的取扱い
 §6.1 重心系と実験室系
 §6.2 二体系の運動学
 §6.3 有効到達距離の式
 §6.4 歪曲波の方法
 §6.5 運動量空間での記述
 §6.6 部分波が結合する場合

第7章 いろいろな近似法(I) アイコナール近似
 §7.1 アイコナール近似について
 §7.2 1次元の場合
 §7.3 3次元の場合
 §7.4 アイコナール近似の成り立つ条件
 §7.5 古典論との関連
 §7.6 グラウバーの理論

第8章 いろいろな近似法(II) WKB法
 §8.1 1次元の場合
 §8.2 3次元の場合
 §8.3 ふれ角(偏角)と位相差
 §8.4 散乱理論と散乱断面積
 §8.5 クーロン散乱

第9章 スツルム‐リウビルの関数
 §9.1 スツルム‐リウビルの関数
 §9.2 ヒルベルト‐シュミットの対称核の理論
 §9.3 ノイマン級数の収束性
 §9.4 共鳴公式

第10章 クーロン力による散乱
 §10.1 正確な解
 §10.2 合流型超幾何関数
 §10.3 クーロン散乱の断面積
 §10.4 部分波分解
 §10.5 拡張されたレイリーの式
 §10.6 有効到達距離の式
 §10.7 クーロン力と短距離力が作用する場合
 §10.8 反対称化
 §10.9 積分方程式

第11章 偏極量(I) スピンの取扱い
 §11.1 座標軸の回転と回転演算子
 §11.2 波動関数の回転
 §11.3 密度行列
 §11.4 マジソンの規約
 §11.5 スピン行列
 §11.6 密度行列による記述
 §11.7 スピン行列と位相差

第12章 偏極量(II) テンソル演算子
 §12.1 カーテシアンテンソルと球テンソル
 §12.2 密度行列
 §12.3 初期に偏極していない粒子により引き起こされた反応の結果生ずる偏極
 §12.4 偏極分解能
 §12.5 パリティ保存による規約
 §12.6 時間反転に対する不変性
 §12.7 偏極移行

第13章 偏極量(III) ヘリシティ振幅
 §13.1 一般論
 §13.2 スピン1/2の粒子とスピン0の粒子の衝突に対するヘリシティ振幅
 §13.3 ヘリシティ表示|J M λ1 λ2>と通常の表示|J M L S>の関係
 §13.4 偏極量の計算法

第14章 三体問題
 §14.1 三体問題におけるL-S方程式の解の非一義性
 §14.2 ファデーエフ方程式とEF-LS三つ組の式
 §14.3 LS三つ組の式について
 §14.4 解の一義性
 §14.5 三体系のメラー波動演算子
 §14.6 3個の同じボーズ粒子の場合
 §14.7 遷移行列

第15章 連分数の方法
 §15.1 連分数
 §15.2 MCFG
 §15.3 パデ近似との関係
 §15.4 束縛状態

付録
索引



         

自然科学書出版 裳華房 SHOKABO Co., Ltd.