裳華房-社名ロゴ 
裳華房のtwitterをフォローする



『理工系の数理 微分積分+微分方程式』 カバー
 
内容見本タイトル
『理工系の数理 微分積分+微分方程式』 内容見本


購入案内タイトル

ネット書店の購入ページへ
Amazon
楽天ブックス
オムニ7
honto
Knowledge Worker
紀伊國屋書店
ヨドバシ・ドット・コム
TSUTAYA
ローチケHMV
BOOKFAN
e-hon
Honya Club

店頭在庫を確認する
丸善&ジュンク堂書店
紀伊國屋書店
三省堂書店

取り扱い書店一覧



電子メール・アイコン

献本へ 理工系の数理 微分積分+微分方程式
Calculus + Differential Equation

在庫マーク

宮崎大学名誉教授 理博 川野日郎・
東京大学名誉教授 工博 薩摩順吉・
龍谷大学教授 理博 四ツ谷晶二 共著

A5判/306頁/定価2916円(本体2700円+税8%)/2004年11月発行
ISBN 978-4-7853-1536-8 (旧ISBN 4-7853-1536-9)  C3041

 数学を専門とする立場の者と数学を応用する立場の者が協同して,数学的正確さと応用を意識した内容を盛り込んだものである.
 現象を解析するための最重要な道具となる微分方程式の基礎までを,微分積分から統一的に解説した.記述にあたっては,高校課程の既習事項を前提とせず,誰でもわかるように配慮した.言葉での説明よりも例題で実際の論理の流れをみることを重視し,さらに図や「注意」を用いて補足を加えるように配慮した.
 本文で触れられなかった重要な基本事項は,付録で紹介した.


サポート情報

正誤表 (pdfファイル)

目次 (章タイトル)  → 詳細目次

1.極限と連続
2.微 分
3.偏微分
4.積 分
5.いろいろな関数と微分・積分
6.テイラー展開
7.微分法の応用
8.重積分
9.複素数と複素平面
10.線形微分方程式
11.求積法
12.変数係数の微分方程式
13.解の存在と一意性

詳細目次  →『理工系の数理 微分積分+微分方程式』 目次

編集趣旨 (pdfファイル)
まえがき (pdfファイル)

1.極限と連続
 1.1 さまざまな数
 1.2 関数とその極限値
 1.3 無限大
 1.4 片側極限
 1.5 関数の連続性
 第1章 練習問題

2.微 分
 2.1 微分係数と導関数
 2.2 合成関数の微分
 2.3 逆関数とその微分
 2.4 ロルの定理と平均値の定理
 2.5 高階微分
 第2章 練習問題

3.偏微分
 3.1 偏微分
 3.2 2変数関数の合成関数の微分
 3.3 陰関数の微分
 3.4 全微分
 3.5 高階偏導関数
 第3章 練習問題

4.積 分
 4.1 定積分
 4.2 微積分の基本定理
 4.3 置換積分の公式
 4.4 部分積分の公式
 第4章 練習問題

5.いろいろな関数と微分・積分
 5.1 指数関数
 5.2 対数関数
 5.3 三角関数
 5.4 逆三角関数
 5.5 対数微分法
 5.6 積分法のまとめ
 5.7 有理関数の積分
 5.8 広義の積分
 第5章 練習問題

6.テイラー展開
 6.1 数列と級数
 6.2 べき級数
 6.3 関数の近似
 6.4 テイラーの公式
 6.5 テイラー展開
 6.6 べき級数の項別微分・項別積分
 6.7 無限小
 6.8 多変数関数のテイラー展開
 第6章 練習問題

7.微分法の応用
 7.1 関数の増減
 7.2 2変数関数の極大・極小
 7.3 条件付極値
 7.4 極座標と座標変換
 第7章 練習問題

8.重積分
 8.1 重積分
 8.2 重積分の計算と積分順序の変更
 8.3 極座標への変数変換
 8.4 一般の変数変換
 8.5 3重積分
 8.6 体積,曲線の長さ,曲面積
 第8章 練習問題

9.複素数と複素平面
 9.1 複素数
 9.2 複素平面
 9.3 オイラーの公式
 9.4 複素数値関数の導関数
 第9章 練習問題

10.線形微分方程式
 10.1 微分方程式
 10.2 微分方程式と解
 10.3 1階線形微分方程式
 10.4 微分演算子
 10.5 定数係数の斉次線形微分方程式
 10.6 定数係数の非斉次線形微分方程式
 10.7 定数変化法と階数低下法
 第10章 練習問題

11.求積法
 11.1 線形化できる微分方程式
 11.2 変数分離形
 11.3 同次形
 11.4 完全微分形の微分方程式
 第11章 練習問題

12.変数係数の微分方程式
 12.1 べき級数展開による解
 12.2 2階微分方程式のべき級数解
 12.3 確定特異点とは
 12.4 確定特異点をもつ微分方程式
 第12章 練習問題

13.解の存在と一意性
 13.1 なぜ存在と一意性なのか?
 13.2 解の存在とは
 13.3 コーシーの折れ線法
 13.4 逐次近似法
 13.5 リプシッツ条件
 13.6 グロンウォールの不等式
 第13章 練習問題

付録
 A.1 上限,下限
 A.2 上極限,下極限
 A.3 コーシー列
 A.4 絶対収束
 A.5 べき級数の微分・積分
 A.6 平行四辺形の面積と2×2の行列式
 A.7 ベクトルの内積と外積
 A.8 平行六面体の体積と3×3の行列式

問題解答
索引

著作者紹介

川野 日郎
かわの にちろう 
1937年 宮崎県生まれ.熊本大学理学部卒業,熊本大学大学院理学研究科修士課程修了.宮崎大学教育学部教授・学部長等を歴任.

薩摩 順吉
さつま じゅんきち 
1946年 奈良県生まれ.京都大学工学部卒業,京都大学大学院工学研究科博士課程単位取得退学.東京大学助教授・教授,青山学院大学教授等を歴任.

四ツ谷 晶二
よつたに しょうじ 
1950年 大分県生まれ.大阪大学理学部卒業,大阪大学大学院理学研究科博士課程単位取得退学.宮崎大学助教授等を経て現職.

(情報は初版刊行時のものから一部修正しています)


姉妹書
「理工系の数理」シリーズ

『理工系の数理 フーリエ解析+偏微分方程式』
理工系の数理
フーリエ解析+
偏微分方程式


『理工系の数理 複素解析』
理工系の数理
複素解析


関連書籍
『基礎 微分積分』
基礎 微分積分


『微分積分学』
微分積分学


『微分積分学[POD版]』
微分積分学[POD版]


『微分積分読本』
微分積分読本


『続 微分積分読本』
続 微分積分読本



教科書をお探しの先生方へ


数学
数学:微分積分
数学:解析学


分野別
シリーズ一覧
書名五十音別
電子書籍
オンデマンド出版書籍


総合図書目録
メールマガジン
東京開業120周年



         

自然科学書出版 裳華房 SHOKABO Co., Ltd.