裳華房-社名ロゴ 
裳華房のtwitterをフォローする



『多様体入門(新装版)』 カバー
→ 帯付きカバー画像 
 
内容見本タイトル
『多様体入門(新装版)』 内容見本


購入案内タイトル

ネット書店の購入ページへ
Amazon
楽天ブックス
セブンネットショッピング
honto
Knowledge Worker
紀伊國屋書店
ヨドバシ・ドット・コム
TSUTAYA
ローチケHMV
e-hon
Honya Club

店頭在庫を確認する
丸善,ジュンク堂書店,文教堂
紀伊國屋書店(新宿本店)
三省堂書店
有隣堂
TSUTAYA
くまざわ書店
コーチャンフォー

取り扱い書店一覧


電子書籍の購入ページへ
Amazon Kindleストア
楽天Kobo
Google Play
BOOK☆WALKER
BookLive!
紀伊國屋 kinoppy
セブンネットショッピング
Reader Store
ひかりTVブック
honto
eBookJapan
dブック
どこでも読書
いつでも書店
COCORO BOOKS
ヨドバシ.com
BOOKSMART
auブックパス
DMM電子書籍



電子メール・アイコン

数学選書5 
多様体入門(新装版)

在庫マーク

元 大阪大学教授 理博 松島与三 著

A5判上製/294頁/定価4840円(本体4400円+税10%)/2017年3月発行
ISBN 978-4-7853-1317-3  C3041

電子書籍

 多様体は“空間”の概念を近代数学の立場から定式化したものであり、幾何学においてその根底をなすだけにとどまらず、理論物理学の大局的理解にも必要なものである。本書の旧版(初版1965年)は、長年にわたって多くの読者から親しまれ、英語版も刊行された本格的入門書である。
 その旧版をもとに、2017年刊行の新装版では、最新の組版技術によって新たに本文を組み直し、レイアウトも刷新して読者の便宜を図った。なお改版にあたっては原則、一部の文字遣いを改めるにとどめ、本文は変更していない。


サポート情報

序言 (pdfファイル)   索引 (pdfファイル)
旧版の紹介ページ

目次 (章タイトル)  → 詳細目次

1.序論
2.可微分多様体
3.微分形式とテンソル場
4.リイ群と等質空間
5.微分形式の積分とその応用

詳細目次  →『多様体入門(新装版)』目次

序言/読者のために (pdfファイル)

1.序論
 1.1 位相空間
 1.2 ベクトル空間
 1.3 $n$ 次元数空間 ${\boldsymbol R}^n$ と $C^r$ 級関数
 1.4 逆関数の定理

2.可微分多様体
 2.1 多様体の定義
 2.2 可微分多様体の例
 2.3 可微分関数と局所座標系
   付記 可微分構造の従属性と同値性
 2.4 可微分写像
 2.5 接ベクトルと接ベクトル空間,リーマン計量
 2.6 関数の微分と臨界点
 2.7 写像の微分
 2.8 Sardの定理
 2.9 リーマン多様体の運動
 2.10 多様体の挿入とうめ込み,部分多様体
 2.11 ベクトル場と微分作用素
 2.12 ベクトル場と1パラメーター変換群
 2.13 リーマン多様体の無限小運動
 2.14 パラコンパクト多様体と単位の分割
 2.15 多様体の位相に関する種々の注意
 2.16 複素多様体
 2.17 概複素構造

3.微分形式とテンソル場
 3.1 $p$ 次線型形式
 3.2 対称テンソルと交代テンソル,外積
   付記 対称積と対称多元環
 3.3 多様体上の共変テンソル場と微分形式
 3.4 テンソル場のリイ微分と微分形式の外微分
 3.5 写像による共変テンソル場の変換
 3.6 多様体のコホモロジー環
 3.7 複素多様体上の複素微分形式
 3.8 微分式系と積分多様体
 3.9 積分可能な概複素構造への応用
 3.10 極大連結積分多様体

4.リイ群と等質空間
 4.1 位相群
 4.2 位相群の部分群と商空間
 4.3 位相群の同型と準同型
 4.4 位相群の連結成分
 4.5 位相群の等質空間,局所コンパクト群
 4.6 リイ群とリイ環
 4.7 リイ群上の不変微分形式
 4.8 1パラメーター部分群と指数写像
 4.9 リイ群の例
 4.10 リイ群の標準座標系
 4.11 複素リイ群と複素リイ環
 4.12 リイ群のリイ部分群
 4.13 線型リイ群
 4.14 リイ群の商空間および商群
 4.15 リイ群の同型と準同型,リイ群の表現
 4.16 連結可換リイ群の構造
 4.17 1パラメーター部分群の微分可能性
 4.18 局所コンパクト群がリイ群になるための条件
 4.19 リイ変換群とリイ群の等質空間
 4.20 等質空間の例

5.微分形式の積分とその応用
 5.1 多様体の向きづけ
 5.2 微分形式の積分
 5.3 リイ群上の不変積分
 5.4 不変積分の応用
 5.5 ストークスの定理
 5.6 写像度
 5.7 ベクトル場の発散,ラプラシアン

あとがき
索引

著作者紹介

松島 与三
まつしま よぞう  
1921年 大阪府に生まれる。旧制浪速高等学校を経て、大阪大学理学部卒業。名古屋大学教授、大阪大学教授などを歴任。朝日賞受章。主な著書に『リー環論』(共立出版)などがある。

(情報は初版刊行時のものです)


姉妹書
「数学選書」

関連書籍
『具体例から学ぶ多様体』
具体例から学ぶ多様体


『曲線と曲面の微分幾何(改訂版)』
曲線と曲面の微分幾何
(改訂版)


『曲線と曲面(改訂版)』
曲線と曲面(改訂版)


『リーマン幾何学』
リーマン幾何学


『理論物理のための 現代幾何学』
理論物理のための
現代幾何学



教科書をお探しの先生方へ


数学
数学:幾何学


分野別
シリーズ一覧
書名五十音別
電子書籍
オンデマンド出版書籍


総合図書目録
メールマガジン
東京開業125周年



         

自然科学書出版 裳華房 SHOKABO Co., Ltd.